Computational Complexity

 

Creative Commons License
This work is licensed under a Creative Commons License.

Powered by Blogger™

Friday, September 13, 2002

 
Complexity Class of the Week: Factoring

Previous CCW

Factoring is not a class, it is not even a language. Nevertheless it has some interesting connections to complexity classes that are worth discussing.

Factoring is the problem of taking a number m and producing the prime factors of m. There are a number of algorithms for factoring but they all take time exponential in the length of the input (log m) in the worst case. Here is a good place to start reading about these algorithms.

Factoring gives a great example of an issue that often arises in complexity, search versus decision. It has always amazed me that we can easily determine whether a number has nontrivial factors but finding these factors is apparently much more difficult. This distinction and some other nice properties of numbers makes factoring very useful in cryptography.

To consider the computational complexity of factoring, we need to make a language version.

FACTOR = {(m,r) | There is an s, 1<s<r such that s divides m}

FACTOR is computationally equivalent to factoring: (m,r) is in FACTOR if and only if r is greater than the least prime factor of m. Given a black-box for FACTOR one can use binary search to find a prime factor of m.

If one insists on a complexity class, one could consider all the languages reducible to FACTOR but there is not much value beyond considering the complexity of the language FACTOR.

FACTOR is in NP∩co-NP: Guess the prime factorization of m. Since every number has a unique prime factorization we have FACTOR in UP∩co-UP where UP is the set of languages accepted by NP machines which have at most one accepting path for every input. The class UP∩co-UP is arguably the smallest interesting complexity class not known to have efficient algorithms and, assuming factoring is hard, really does not have efficient algorithms. I should note that FACTOR in UP∩co-UP was known before the recent AKS primality algorithm but the proof was more difficult.

Peter Shor almost singlehandedly justified the study of quantum computing by his efficient quantum algorithm for factoring, in complexity terms FACTOR in BQP. His proof used the fact that factoring of a number m can be reduced to finding the order of the multiplicative group (mod n). Shor then shows that quantum computers can solve this kind of group question.

Factoring does not appear to be hard for any nontrivial complexity class. This means that unlike Satisfiability we don't have any reason to believe that factoring is hard other than the fact that many smart people have failed to solve it. On the other hand the hardness of factoring is taken as a given in the study of complexity and cryptography and used to show the hardness of classes like UP∩co-UP.

8:33 AM # Comments []  

Thursday, September 12, 2002

 
Who says you can't make money with mathematics? Here is an interesting Wired article on the MIT Blackjack team.

12:53 PM # Comments []  

 
Science Screenplay Contest

Have you secretly been writing a movie script about a computer scientist? Now is your chance. Robert De Niro's Tribeca Film Institute in conjunction with the Sloan foundation is looking for movie scripts with a lead character who is a scientist, mathematician or engineer. No science fiction stories will be accepted.

Update 8/4/05: See the winners.

5:49 AM #  

Wednesday, September 11, 2002

 
On September 11, 2001 we lost a member of the theoretical computer science community. Danny Lewin, an MIT graduate student who went on to co-found Akamai was on board the American Airlines flight that crashed in New York City. He and the other victims of that day will always be remembered.

6:14 AM # Comments []  

Sunday, September 08, 2002

 
Foundations of Complexity
Lesson 1: What is a computer?

Next Lesson

This is the first of a long series of posts giving an informal introduction to computational complexity.

Computational complexity theorists try to determine which problem are efficiently solvable on a computer. This sentence already leads to many questions: What is a problem? What is efficiently solvable? Let us first start off with a truly basic question, what is a computer?

In 1936, Alan Turing invented a theoretical computing device now called a Turing Machine. This was before electronic computers existed. He tried to give a simple model of the thought processes of mathematicians. His model has stood the test of time and represents the official model of computation that we still study today.

Instead of giving the formal definition of a Turing machine, let us try a more modern approach. Consider some current programming language like Java. Let us consider the (imaginary) world where a Java program has access to a potentially infinite amount of storage. A Turing machine corresponds to a specific Java program. You might find it a little confusing to think of Turing machine = Java Program but that is the best way to think about it.

Does it matter which programming language we choose? What if we used C++ or Visual Basic or the original Turing machine model? No, it makes no difference. Consider a C++ program P. There are, at least theoretically, Java programs that will interpret C++ programs. If you consider a Java program that interprets P, it will have the same computational behavior as P. This idea holds between any two programming languages including the original Turing machine and leads to the Church-Turing thesis:

Everything computable is computable by a Turing machine.

Which you can interpret as saying everything is computable is computable by a Java program.

The Church-Turing thesis cannot be proven as it is a thesis but has lead us to define computable as computable by a Turing machine. Now after about half a century of having real computers, the Turing machine has really proven itself as the right model of computation.

7:25 PM # Comments []  

Archives